ASSIGNMENT #9

Please do not write your answers on a copy of this assignment, use blank paper. As with all assignments, there will conceptual and computational questions. For computational problems you may check your work using any tool you wish; however you must clearly explain each step that you make in your computation.

For this assignment I encourage you to work with others; however, you are expected to **submit your own work in your own words**. In addition to the true and false section being graded, I will grade one other problem; this will account for 10 points out of 25. The other 15 will be based on completion. **If you would like feedback on a particular problem, please indicate it somehow.** You must make an honest attempt on each problem for full points on the completion aspect of your grade.

(1) Below, for each basis \mathcal{B} for a vector V, use $[\mathbf{x}]_{\mathcal{B}}$ to write $\mathbf{x} \in V$ as a linear combinations of elements of \mathcal{B}

(a)
$$\mathcal{B} = \left\{ \begin{bmatrix} 3\\-5 \end{bmatrix}, \begin{bmatrix} -4\\6 \end{bmatrix} \right\}$$
 and $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 5\\3 \end{bmatrix}$.
(b) $\mathcal{B} = \left\{ \begin{bmatrix} -1\\2\\0 \end{bmatrix}, \begin{bmatrix} 3\\-5\\2 \end{bmatrix}, \begin{bmatrix} 4\\-7\\3 \end{bmatrix} \right\}$ and $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -4\\8\\-7 \end{bmatrix}$.

(2) The set
$$\mathcal{B} = \{1 - x^2, x - x^2, 2 - 2x + x^2\}$$
 is a basis for $V = \mathbb{R}[x]_{\leq 2}$.

- (a) Find the coordinate vector of p(x) = 1 with respect to \mathcal{B} .
- (b) Find the coordinate vector of p(x) = x with respect to \mathcal{B} .
- (c) Find the coordinate vector of $p(x) = x^2$ with respect to \mathcal{B} .
- (d) Find the coordinate vector of $p(x) = 3 + x 6x^2$ with respect to \mathcal{B} .
- (3) Let $\mathcal{D} = \{\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3\}$ and $\mathcal{F} = \{\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3\}$ be bases for a vector space V. Suppose that

$$\begin{aligned} {\bf f}_1 &= 2 {\bf d}_1 - {\bf d}_2 + {\bf d}_3 \\ {\bf f}_2 &= 3 {\bf d}_2 + {\bf d}_3 \\ {\bf f}_3 &= -3 {\bf d}_1 + 2 {\bf d}_3. \end{aligned}$$

- (a) Find $[\mathbf{x}]_{\mathcal{D}}$ for $\mathbf{x} = \mathbf{f}_1 2\mathbf{f}_2 + 2\mathbf{f}_3$
- (b) Find the base-change matrix $P_{\mathcal{D}\to\mathcal{F}}$.
- (c) Find the base-change matrix $P_{\mathcal{F}\to\mathcal{D}}$.

- (4) Let $V = \mathbb{R}[x]_{\leq 2}$. The sets $\mathcal{B} = \{1, x, x^2\}$ and $\mathcal{C} = \{1 3x^2, 2 + x 5x^2, 1 + 2x\}$ are two different bases for V.
 - (a) Find $P_{\mathcal{B}\to\mathcal{C}}$.
 - (b) Find $P_{\mathcal{C} \to \mathcal{B}}$.
- (5) Answer the following true and false questions. You do not need to provide justification.
 - (a) Let \mathcal{B} , \mathcal{C} and \mathcal{D} be bases for a vector space V. Then $P_{\mathcal{C}\to\mathcal{D}}\cdot P_{\mathcal{B}\to\mathcal{C}} = P_{\mathcal{B}\to\mathcal{D}}$. Hint: you might consider looking at a few examples.
 - (b) There is a finite dimensional vector space V, of dimension n, that is not isomorphic to \mathbb{R}^n .
 - (c) The kernel of a linear transformation $T: V \to W$ is a subspace of V.
 - (d) The image of a linear transformation $T: V \to W$ is not a subspace of W.
 - (e) The column space of a matrix A is the set of solutions of $A\mathbf{x} = \mathbf{b}$.
 - (f) If E is an elementary matrix and A is a matrix, both square matrices of size $n \times n$, then the column space of EA is not the same as the column space of A.